Хессет Введение в психофизиологию

 

До сих пор мы рассуждали так, как будто электрическая активность кожи (ЭАК) очевидным образом определяется активностью потовых желез. Однако ранние исследователи предполагали, что здесь могут участвовать и иные факторы: некоторые считали, что ЭАК отражает мышечную активность, тогда как другие подчеркивали возможное участие перифери¬ческих кровеносных сосудов. Мышечная теория была довольно скоро отвергнута. Сосудистая теория держалась несколько дольше, но ряд изящных экспериментов опроверг и эту воз¬можность. Например, Лэйдер и Монтегю (Lader, Montagu, 1962) показали, что, если подавить реакцию потовых желез фармакологическими средствами, РПрК исчезает. Такая же блокада периферических кровеносных сосудов сохраняет РПрК без изменения. До сих пор неясно, может ли сосудистая система влиять на кожный потенциал. Как бы то ни было, в настоящее время почти все признают, что ЭАК обусловлена главным образом активностью потовых желез.

Хотя для потовых желез нейромедиатором служит ацетил-холин (передатчик, характерный для парасимпатической системы), они находятся под симпатическим контролем. Напри¬мер, разрушение симпатической нервной системы на одной стороне тела уничтожает ЭАК только на этой стороне (Schwartz, 1934). Ввиду этого и вследствие широко распростра-

 

ненного убеждения, что симпатическая реакция носит диффуз¬ный характер, ЭАК использовалась в прошлом как грубый индикатор активации симпатической системы. Однако рас¬смотрение связей потовых желез с центральной нервной системой показывает необоснованность такого упрощенного подхода (Edelberg, 1972; Rickles, 1972).

Анатомически от мозга к потовым железам идут два пути: один от коры больших полушарий, а другой от глубинных структур головного мозга — гипоталамуса и ретикулярной формации. Уже это показывает нам, что даже «простая» потовая железа — орган с неожиданно высокой биологической сложностью. По ходу нашего обзора мы увидим, что разные показатели ЭАК могут давать весьма различную информацию о лежащих в ее основе процессах. Простое предположение, что любой показатель ЭАК служит надежным индикатором уровня активации симпатической системы, уже нельзя считать верным.

Прежде чем рассматривать сдвиги в работе потовых желез, ответственные за ЭАК, познакомимся вкратце с некоторыми особенностями потоотделения у человека.

В 1614 году Санкториус Санкторио начал серию опытов по потоотделению, которые он продолжал более 30 лет. С удивительной преданностью своей работе он проводил долгие часы сидя на очень чувствительных весах. Он показал, что выделение пота происходит постоянно, даже когда на коже не появляются капли,.— это он назвал «неощутимой перспира¬цией». За один обычный день он терял около фунта пота. Верность этой оценки подтверждена современными учеными (Kuno, 1956).

У человека имеется 2—3 миллиона потовых желез, рас¬сеянных по всему телу. Количество их в разных участках тела сильно варьирует. Обычно, например, на ладонях и подошвах бывает около 400 потовых желез на квадратный сантиметр поверхности, около 200 на лбу и около 60 на спине (Champion, 1970). Хотя точное число желез на единицу площади у разных людей бывает разным, соотношение их числа в разных местах весьма постоянно (Kuno, 1956). Иными словами, у всех людей на ладонях и подошвах всегда больше потовых желез, чем на лбу, а на лбу — больше, чем на спине.

Существует два типа потовых желез. Менее распространен¬ные апокринные железы развиваются из волосяных фолликулов и находятся главным образом под мышками и в области по¬ловых органов. Считается, что эти железы исключительно и определяют запах тела (Champion, 1970). Они реагируют в первую очередь на раздражители, вызывающие стресс, и не играют почти или совсем никакой роли в регуляции

 

58

 

Глава 4

 

Потовые железы

 

59

 

 

 

температуры тела, хотя в этих же участках есть и железы, чувствительные к температуре.

Апокринные железы начинают функционировать приблизи¬тельно с наступлением половой зрелости. Их секрет несколько отличается от того солевого раствора, каким является пот Они секретируют свою цитоплазму, т. е. часть содержимого клетки.

Биологическая роль этого апокринного потоотделения мало¬понятна, хотя ученые и высказали ряд интересных предполо¬жений. В общем эти теории основаны на том факте, что у высших животных многие запахи служат сигналами для половых партнеров. Пахучие вещества такого рода называются феромонами.

Есть некоторые указания на то, что подобные вещества могут играть важную роль и в биологии человека. Например, исследование Вирлинга и Рока (Vierling, Rock, 1967) показа¬ло, что некоторые запахи могут ощущаться только женщинами в детородном возрасте. Одно из таких веществ, обладающее мускусным запахом,— экзальтолид — найдено в моче мужчин. Мужчины его запаха не ощущают, как не ощущают его и жен щины до наступления менструаций или в период менопаузы. Женщины детородного возраста чувствуют этот заггах сильнее в те несколько дней каждого менструального цикла, когда возможно зачатие. Хотя секрет апокринных желез не исследо¬вали на присутствие в нем экзальтолида, вполне возможно, что это вещество у человека представляет собой феромон — сигнальный фактор, связанный с полом. В другом исследовании (McClintock, 1971) были получены данные о возможной роли феромонов в определении ритма менструальных циклов.

Таким образом, хотя наука уделяла мало внимания апокринному потоотделению, оно, возможно, является древним механизмом, играющим какую-то роль в нашем поло-вом_ поведении (Thomas, 1974). Еще один довод в пользу этой гипотезы — то, что по крайней мере у женщин количество пота, выделяемого апокринными железами, снижается при повышении уровня эстрогенов (Rothman, 1954). Возможно, будущим ученым предстоит узнать, что распространенное в нашем обществе использование дезодорантов подавляет не только запах тела.

Потовые железы второго типа называются эккринными. Они распределены по всей поверхности тела и выделяют раствор NaCl. Хорошо развиты они только у человека и челове¬кообразных обезьян (Champion, 1970) Их главная функция — тер-морегуляция, поддержание постоянной температуры тела. Тепло образуется при сокращении мышц и при обмене ве¬ществ   Наш организм стремится поддерживать внутреннюю

 

температуру на постоянном уровне около 36—37°С путем отдачи тепла с выдыхаемым воздухом и через кожу. Одно из средств повышения кожной теплоотдачи — терморегуляцион¬ное потоотделение.

В течение дня мы в обычных условиях теряем около полулит¬ра жидкости с потом. Это та самая неощутимая перспирация, которую впервые обнаружил Санкториус Санкторио. При температуре воздуха около 30°С пот начинает появляться на теле в виде мелких капелек. При исключительно сильной жаре потеря жидкости может достигать около 3,5 литров в час и 14 литров в день (Rothman, 1954). При испарении этой жидкости происходит потеря тепла. Количество пота, которое может испариться, зависит также от влажности, т. е. коли-чества влаги в воздухе. Таким образом, наша вялость в жаркие влажные дни, может быть, служит инстинктивным способом поддержания постоянной температуры тела.

Всеми этими реакциями управляет рефлекторный центр, который находится в гипоталамусе и реагирует на температуру крови. Рефлекторное потоотделение происходит автоматически, прежде чем организм начнет подвергаться риску перегрева.

Другие эккринные железы реагируют не столько на измене¬ния температуры, сколько на внешние раздражители и стресс. Эти потовые железы сосредоточены на ладонях и подошвах, а также, в меньшей степени, на лбу и под мышками. Подразделение желез имеет не абсолютный, а относительный характер. В условиях сильной жары «эмоциональные» железы могут на нее реагировать, а в условиях крайнего стресса на него могут отвечать и терморегуляторные железы.

Электрическая активность кожи (ЭАК) обычно оказывается показателем такого «эмоционального» потоотделения. Ее обыкновенно регистрируют с кончиков пальцев или ладони, хотя ее можно измерять и на ногах, а также, возможно, на лбу и под мышками. Многие психофизиологи действовали в своих работах так, как будто бы место отведения ЭАК не имеет существенного значения. Это, вероятно, справедливо для тех несложных исследований, о которых мы до сих пор говорили. Булл и Гэйл (Bull, Gale, 1975) показали, что при прослушивании испытуемыми серии тонов реакции, регистри¬руемые с обеих рук, если не идентичны, то во всяком случае сходны. Однако некоторые недавние исследования, а также соображения биологического здравого смысла заставляют предполагать, что это бывает не всегда. Например, по данным Варни (Varni, 1975), когда при выработке классического условного рефлекса на одну из рук подается электрический удар, более сильные электрические реакции кожи обнаружи¬ваются именно на этой руке. Мыслободский и Рэтток (Myslo-

 

60        Глава 4

 

Потовые железы

 

61

 

 

 

 

Рис. 4.2. Эккринная потовая железа.

бодскы, Ратток, 1975) недавно обнаружили, что левая рука дает большую реакцию на зрительные стимулы, чем на сло¬весные. Это согласуется с современными представлениями о межполушарной асимметрии (см. гл. 7 и 9).

На рис. 4.2 показано анатомическое строение эккринной потовой железы. Самый наружный слой кожи, роговой (stra¬tum corneum), состоит из отмерших клеток, образующих за¬щитную пленку для чувствительных внутренних частей кожи. Этот слой выполняет примерно ту же функцию, что и шерстный покров у некоторых животных. Следующий слой кожи — мальпигиев слой — состоит из делящихся клеток, которые непрерывно заменяют отмершие клетки поверхностного слоя. Весь эпидермальный слой в электрофизиологическом отноше¬нии относительно нереактивен, большинство электрических из¬менений происходит, по-видимому, в следующем слое — дер¬ме — ив протоках самих потовых желез.

* Вспомним, что большая часть пота, выделяемого человеком в нормальных условиях, не обнаруживается в виде капель на коже. Неощутимая перспирация обычно осуществляется не

 

через потовые железы, а более прямым путем — через по¬верхность кожи.

Как мы уже отмечали, ЭАК определяется в первую очередь самими потовыми железами. Точные детали этого механизма остаются пока неясными, однако мы опишем модель «цепи потовыделения», предложенную Робертом Эдельбергом (Edel-berg, 1972). Эта модель отражает, по-видимому, одно из наибо¬лее законченных современных представлений по этому вопросу.

Эдельберг исходит из того, что полость потовой железы имеет заметный отрицательный потенциал по отношению к окружающей ткани. Это основная электродвижущая сила ПК. Потовые протоки обычно наполнены потом до уровня маль-пигиева слоя. Это количество пота, стоящее в протоке, и опре¬деляет тонический уровень показателей ЭАК. Если пот выталкивается вверх по протоку (что может произойти при условии секреции под влиянием симпатических нервов или при сокращении миоэпителиальных волокон, в большей степени контролируемых гормонами), то выявляется РПрК или РПК-

Пот не остается на этом новом уровне. Он может медленно диффундировать через стенку протока в роговой слой или же активно реабсорбироваться мембранами клеток протока. Соотношение этих двух процессов определяет форму поздних компонентов реакций.

Чтобы понять значение этих различий, нам надо подробнее рассмотреть топографию реакции. До сих пор мы говорили только о простейшей форме РПК, при которой все изменения сводятся к кратковременному увеличению электронегатив¬ности. Однако часто наблюдаются и более сложные формы РПК. На рис. 4.3 показаны классическая однофазная и двухфазная волны РПК и их соотношение с фазой вос¬становления (возвращения к исходному уровню) при РПрК.

Вернемся теперь к нашей первоначальной реакции. Если пот медленно диффундирует через стенку протока, то про¬водимость кожи будет постепенно возвращаться к исходному уровню. Такое медленное восстановление обычно сопровождает¬ся однофазным отрицательным сдвигом кожного потенциала. Если же изменения в мембранах клеток протока обеспечивают активную реабсорбцию пота и, следовательно, быстрый ход фазы восстановления, то мы, по всей вероятности, увидим двухфазную РПК.

Таким образом, в простейшем случае показатели электри¬ческой активности кожи связаны с количеством пота, стоящим в протоке. Медленное восстановление при РПрК и однофазная отрицательная РПК указывают на быстрое движение пота вверх по протоку, обусловленное либо его усиленным выделением, либо сокращением мышцы в основании железы. Двухфазная

 

G2

 

Глава 4

 

Потовые железы

 

63

 

 

 

 

Рис. 4.3. Схема отношений между РПрК и РПК.

Слева — однофазная РПК (отрицательное отклонение от-нулевой линии), которая обычно сопровождается РПрК с медленным вос¬становлением (оборонительная реакция). Справа — двухфазная РПК (отрицательное и положительное отклонение), сопровождаю¬щаяся РПрК с более быстрым восстановлением (целенаправленная активность). В действительности реакции бывают несколько сложнее (см. Edelberg, 1970).

РПК и быстрый ход восстановления при РСК говорят об активной реабсорбции пота. Отметим, что (во всяком случае, теоретически) эти процессы могут происходить ниже уровня поверхности кожи. ЭАК отражает активность большого числа потовых желез, а не просто количество выделяемого пота. Заметим также, что в соответствии с этой моделью не только разные показатели ЭАК, но и разные компоненты одного ответа могут отражать разные биологические процессы. Ниже мы рассмотрим возможную роль таких различий при различ¬ных биологических категориях поведения.

 

Физиологическая основа

Сердце — наиболее важная мышца нашего тела. Об этом органе, имеющем форму кулака, мы редко думаем как о мышце, однако это так и есть. Этот орган поддерживает кровообра¬щение и тем самым — снабжение всех тканей тела кислоро¬дом и питательными веществами, а также удаление ненужных продуктов метаболизма. Природа была достаточно мудра, создав сердце и мозг так, что мы сознательно не управляем их работой. Когда вы читаете эту страницу или ваше вни¬мание сосредоточено на чем-либо ином, ваше сердце продолжа¬ет биться.

Давайте посмотрим, какую работу проделывает в течение жизни этот орган весом около 400 граммов. Если в среднем сердце сокращается 70 раз в минуту, то за сутки это составит 100 000 раз, а за 70 лет жизни — более чем два с половиной миллиарда раз. За сутки сердце перекачивает более 40 000 лит¬ров крови, что за всю жизнь составляет более миллиарда лит¬ров. Работа, производимая при перекачивании всей этой крови, если бы ее можно было осуществить сразу, позволила бы поднять груз весом 10 тонн на высоту 10 миль. Эти пора¬жающие воображение цифры еще раз напоминают нам об удивительных возможностях организма даже не очень силь¬ного человека.

Относительно животных можно сказать, что в покое ча¬стота сокращений сердца варьирует у них в зависимости от размеров тела и характера нормальной активности. У крысы

 

она составляет 400 в минуту, тогда как у слона — 25, а у кита — что-то около 5 в минуту.

В организме человека циркулирует около 5 литров крови (это было установлено еще в XVIII веке наблюдениями над обезглавленными преступниками). Кровь течет по системе тонких трубочек; богатая кислородом кровь выходит из сердца по аорте и направляется к различным органам по артериям и артериолам; затем она проходит через капилляры, стенки которых состоят из одного слоя клеток и пропускают пита¬тельные вещества из крови в ткань, а отходы метаболизма — в обратном направлении. Затем по венулам и все более круп¬ным венам кровь возвращается к сердцу. Если сложить капилляры взрослого человека в одну длинную трубку, то она протянется от Бостона (Массачусетс) до Хобокена (Нью-Джер¬си) и обратно примерно 150 раз (что составит около 100 000 ки¬лометров). Сердце снова и снова посылает кровь по этому лабиринту, никогда не уставая и не приостанавливая небла¬годарную работу по поддержанию нашей жизни.

Сердечно-сосудистая система должна не только постоянно удовлетворять потребность тела в питательных веществах, но и принимать надлежащие меры, когда потребность какого-либо органа возрастает. Простой зевок с потягиванием тре¬бует значительного перераспределения ресурсов, и кровь приливает к соответствующим группам мышц. Кроме того, через коронарную систему сердце должно питать само себя. И тем не менее независимо от того, как мы перенапрягаемся или недогружаем себя, оно продолжает качать кровь.

На рис. 5.2 схематически представлено сердце, а на рис. 5.3 — вся система кровообращения. Сердце состоит из четырех камер, которые действуют как два спаренных насоса. Богатая кислородом кровь попадает из левого желудочка в большой круг кровообращения; здесь она по артериям идет к различным органам, где отдает питательные вещества и кислород и принимает ненужные продукты обмена, а затем по венам возвращается назад к сердцу — к правому пред¬сердию. В малом {легочном) круге кровообращения уже бед¬ная кислородом кровь проходит через легкие. При этом она выходит из желудочка по легочной артерии (единственной в организме артерии с кровью, бедной кислородом), а затем течет по капиллярной системе легких, где отдает углекислоту и пополняет свои запасы кислорода, после чего идет к ле¬вому предсердию по легочной вене.

Разумеется, циркуляцию крови поддерживает четкий цикл определенных процессов в самом сердце. Сердечный цикл делится на две главные части: систолу, т. е. сокращение сер¬дечной мышцы, и диастолу — ее расслабление. В систоличе-

 

76

 

Глава 5

 

Сердечно-сосудистая система

 

77

 

 

 

 

Рис. 5.2. Сердце.

ской фазе давление крови достигает максимума в момент выталкивания крови из сердца. Во время диастолы давление снижается до минимума, когда захлопываются клапаны же¬лудочков, препятствуя обратному току крови. Открывание и закрывание этих и других клапанов производит знакомый нам звук биения сердца в груди — «лаб-дап». Звук «лаб» получается при быстром закрытии клапанов между пред¬сердиями и желудочками, которое сопровождается сокращени¬ем толстых мышечных стенок желудочков, а «дап» — при рез¬ком закрытии аортального и легочного клапанов. Когда в этих звуках отмечаются аномалии, говорят о шумах в сердце, нали¬чие которых означает, что клапаны закрываются неплотно. Прослушав тоны сердца с помощью стетоскопа, опытный кар¬диолог может определить характер заболевания, связанного с этими клапанами.

В организме существует много систем регулирования сердеч¬ного ритма. В первую очередь за ритмичность сокращения сердца ответственны его внутренние водители ритма (пейс-мейкеры) — синоатриальный и атриовентрикулярный узлы. На них влияет сложная система высших управляющих центров, наиболее важные влияния приходят по симпатическим и парасимпатическим нервам. Раздражение симпатических волокон усиливает и ускоряет сокращения сердца, а актива¬ция парасимпатических волокон замедляет их.

Такие локальные контролирующие факторы, как пейсмей-керы, чувствительность сердечной мышцы к уровню цирку¬лирующих гормонов, механические воздействия со стороны

 

 

Рис.   5.3. Схема строения сердечно-сосудистой системы.

диафрагмы и грудной клетки, дополняются влиянием высших центров. В конечном счете, разумеется, регулирование работы сердечно-сосудистой системы в соответствии с потребностями тканей обеспечивается головным мозгом. Разнообразие связей с ЦНС таково, что в сравнении с ними остальная часть си¬стемы кажется несложной.

Для того чтобы систематизировать имеющиеся данные, Коэн и Мак-Дональд (Cohen, MacDonald, 1974) разделили связи сердечно-сосудистой системы с ЦНС на шесть категорий. Они включают «оборонительный» путь, идущий из продолго¬ватого мозга, путь адаптации к нагрузке — из двигательной коры, путь адаптации к положению тела — из мозжечка, а также несколько давно уже известных путей, проходящих через продолговатый мозг. Детали этой системы достаточно сложны. И опять-таки с нашей точки зрения наиболее важно то, что перестройки в работе сердечно-сосудистой системы отражают

 

78

 

Глава 5

 

Сердечно-сосудистая система

 

79

 

 

 

процессы, происходящие в головном мозгу, и то, что ни один показатель сердечно-сосудистой системы не является чисто «периферическим».

 

Дыхательная система

Штёрринг (Stoerring, 1906) впервые исследовал дыхание в связи с психическими состояниями. Он предложил определять в различных ситуациях среднее отношение длительности вдоха к длительности выдоха (I/E). Бенусси (Benussi, 1914) утверж¬дал, что отношение I/E служит объективным индикатором лжи. Хотя позднее другие экспериментаторы оспаривали на¬дежность этого признака (Burtt, 1921; Landis, Wiley, 1926), ды¬хание в настоящее время продолжает оставаться одним из глав¬ных показателей при детекции лжи (см. гл. 10).

Другие ранние исследователи при измерении дыхания пы- ■ тались влиять на эмоциональное состояние человека. Револьдт (Rehwoldt, 1911) нашел, что при вспоминании или представле¬нии какого-либо эмоционально окрашенного события дыхание у испытуемых становится частым и глубоким. С помощью специального стула, который опрокидывался назад в момент, когда испытуемый на него садился, у людей вызывали испуг (Blatz, 1925). При этом отмечалось замедление дыхания и

 

учащение сердечного ритма. Риддл (Riddle, 1925) обнаружила, что во время игры в покер у игроков увеличивается частота и глубина дыхания. Она выявила также некоторую корре¬ляцию между степенью «желания выиграть» (по оценке самого игрока) в данном коне игры и его дыхательными реакциями

Значительный энтузиазм вызвало утверждение Фелеки (Feleky, 1914, 1916), что на основании величин отношения I/E он может различать шесть главных эмоций — удоволь¬ствие, боль, гнев, удивление, страх и отвращение. Интересно отметить, что этот список основных эмоций фактически совпа¬дает с тем, который был установлен недавно при изучении выражения лица (см. гл. 8). Однако результаты Фелеки были получены только на одном испытуемом, и на каждую из эмоций приходилось только по одному опыту. Воспроизвести их не удалось, и это привело к более осторожной оценке их значения.

Дыхательная система состоит из дыхательных путей (по¬лости носа, рта и т. д.) и легких (рис. 6.1). Основной двига¬тельный аппарат этой системы составляют межреберные мыш¬цы, диафрагма и мышцы живота; все они относятся к поперечно¬полосатой («произвольной») мускулатуре, и тем не менее здесь имеет место необычное сочетание произвольного и рефлектор¬ного контроля. Попытка покончить с собой, задерживая дыха¬ние, обречена на неудачу, но она еще раз продемонстрировала бы такого рода смешанное управление мышцами. Хотя в из¬вестных пределах мы можем контролировать вдох и выдох сознательно, дыхательный центр продолговатого мозга следит за содержанием двуокиси углерода в крови и в случае надоб¬ности инициирует мощный дыхательный рефлекс. Точно так же и для обычного дыхания не требуется, чтобы мы его осознавали или активно участвовали в его осуществлении. Однако при ку¬рении сигареты уже необходим активный контроль вдохов и выдохов. Речь и пение также требуют сложной произвольной регулировки дыхания. Кашель, смех и чихание представляют собой весьма обычные модификации дыхания, которые могут быть и произвольными, и непроизвольными. Структура моз¬говых механизмов, ведающих такими модификациями, отра¬жает сложность различных функций дыхательных движений.

Воздух, поступающий в легкие во время вдоха, снабжает протекающую по легочным капиллярам кровь кислородом. Одновременно из крови выходят двуокись углерода и другие вредные продукты метаболизма, которые выводятся наружу при выдохе. Между интенсивностью мышечной работы, совершае¬мой человеком, и потреблением кислорода существует простая линейная зависимость (Krogh, 1941). Потребление О2 варьи¬рует в пределах от 0,2 л/ (кг/ч) (литров на килограмм веса тела в час) во время покоя до 4 л/(кг/ч) при крайнем напряжении.

 

96

 

Глава 6

 

Дыхательная и пищеварительная системы

 

97

 

 

 

 

Рис.   6.1. Дыхательная система.

Ввиду наличия прямой связи между суммарными потребно¬стями организма и уровнем дыхания многие видели в дыхании многообещающий показатель общей активации организма (Woodworth, Schlosberg, 1954). Однако интерес к дыханию как индикатору эмоций в дальнейшем снизился, и одной из главных причин этого было постепенное разочарование в кон¬цепции общей активации.

Самый старый из методов регистрации дыхания состоял в прямом измерении объема воздуха при каждом вдохе и выдохе. Выдыхаемый газ иногда собирали для химического анализа. Ясно, что этот метод предполагает наличие замкнутой системы, присоединенной ко рту или носу. Неудобство этого метода было доведено до предела в исследовании Бартлета (Bartlett, 1956), в котором испытуемые с мундштуками во рту и зажимами на носу должны были совершать половой акт. При этом у них удавалось зарегистрировать пик частоты дыхания при оргазме. Однако вряд ли можно сомневаться в том, что такой метод накладывал какие-то искусственные ограничения на регистрируемые реакции. * Менее точный, но более простой метод состоит в прикреп¬лении около носа термистора. Перед выдохом воздух внутри тела нагревается, так что легко уловить прибором его повы-

 

шенную температуру при выдохе по сравнению с более низкой температурой при вдохе. Однако чаще дыхание измеряют по изменениям объема грудной клетки и живота при каждом вдохе. На обоих этих участках прикрепляют датчик натяжения. Его растягивание регистрируется на полиграфе как изменение электрического сопротивления. [Гроссман (Grossman, 1967) считает, что при некоторых условиях степень сокращения груд¬ной клетки и живота может изменяться независимо и что исследователь, серьезно интересующийся дыханием, должен регистрировать обе величины одновременно.] Поскольку исход¬ное натяжение пояса бывает разным для разных испытуемых, этот метод, так же как и использование термистора, не дает надежных сведений об абсолютном объеме вдыхаемого и выды¬хаемого воздуха. Как видно из рис. 6.2, этот метод обеспечивает, однако, хорошую запись изменений частоты и амплитуды ды¬хания. Такую запись легко анализировать в отношении таких показателей, как число вдохов в минуту,, относительная ампли¬туда дыхательных движений в разных условиях и даже нали¬чие определяемых на глаз «нерегулярностей дыхания» (см., например, Schwartz, 1971).

Большинство психофизиологов в наши дни регистрирует дыхание только для того, чтобы проверить, нет ли артефактов в других записях. Простое чихание или кашель создают иногда серьезные помехи: при вздрагивании испытуемого могут немно¬го сместиться электроды, всякое движение сопровождается большими мышечными потенциалами, может возникнуть реак¬ция потовых желез и т. д. Поэтому во многих психофизиологи¬ческих лабораториях, особенно в тех, где исследуют реакции вегетативной нервной системы, дыхание обычно регистрируется в качестве «экстра-канала». Данные о дыхании отдельно не анализируются, но обычно они нужны, чтобы указать экспе¬риментатору, какие участки записей не следует подвергать окончательному анализу.

 

Рис. 6.2. Пример записи дыхания с помощью датчика растяжения. На верхней записи можно видеть регулярный характер вдохов (отклонения вверх) и выдохов (отклонения вниз) во время покоя. Нижняя запись — дыхание того же испытуемого во время разговора и смеха.

4   Зак. 699

 

 

98

Глава 6

Сходная ситуация возникла при создании дополнительной обратной связи от сердечно-сосудистой системы (см. гл. 10). Хорошо известно, что человек может повысить частоту сокра¬щений своего сердца с помощью гипервентиляции. Эксперимен¬таторы,  которым  хотелось   продемонстрировать,  что  можно научиться управлять ритмом сердца, не заставляли испытуемых просто дышать чаще или реже; во многих исследованиях по обратной связи, влияющей на ритм сердца, дыхание лишь регистрируется и испытуемые, которые начинают сильно его изменять, получают инструкцию использовать другую страте¬гию (см., например, Hassett, 1974). Работы, специально по¬священные вопросу об отношении между изменениями ритма сердца при действии обратной связи и дыханием, показали, что эти функции можно изменять независимо  (см. Vaitl, 1972). Некоторые исследователи продолжают регистрировать по¬казатели дыхания как общие индикаторы состояния обмена веществ. Уоллес и сотр.  (Wallace et a!., 1971), например, сообщили, что частота дыхания и объем вдыхаемого воздуха резко уменьшаются при трансцендентальной медитации. Сни¬жение потребления кислорода было одним из наиболее выра¬женных изменений, обнаруженных ими при общем расслабле¬нии всего тела, которое они назвали «гипометаболическим состоянием». При исследовании сна тоже регистрируют дыхание в течение всей ночи.

В целом можно сказать, что дыхание — это, по-видимому,

одна из недостаточно оцененных переменных в психофизиологи¬

ческих исследованиях. Недостаточную «тонкость» простой

регистрации растяжения грудной клетки удалось отчасти ком¬

пенсировать аналогичной регистрацией на уровне живота.

Используя такого рода систему, Свебак (Svebak, 1975) нашел,

что запись особенностей дыхания в условиях покоя позволяет

предсказывать, кто из женщин (но не мужчин) будет сильнее

всего смеяться в кульминационных моментах норвежского

варианта «Candid Camera» '.          '

Пищеварительная система

Всякий, кто стоял перед большой аудиторией и чувствовал поднимающуюся волну тошноты, знает, как интимно связан пищеварительный тракт с нашей эмоциональной жизнью. Но хотя мы часто ощущаем неприятные моменты при реакции желудка на психические стимулы, это не привлекало большого внимания психофизиологов. Дело в том, что эти сложные из¬менения происходят в глубине тела и их трудно обнаружить н-в его поверхности. В  отличие от мощных электрических

1 Телевизионный фильм  со  съемками  скрытой  камерой.— Прим. ред.

 

Дыхательная и пищеварительная системы          УУ

потенциалов при сокращении сердца электрические изменения при сокращении желудка трудно выявить и трудно интер¬претировать. При изменении концентрации различных веществ в содержимом пищеварительного тракта возникают разнооб¬разные субъективные симптомы. Их изучали с помощью спе¬циальных очень сложных приборов почти исключительно в медицинских учреждениях. Однако физиологические изменения пока что ускользают от наших методических ухищрений. Вот, например, что говорят об этом Вулф и Уэлш (Wolf, Welsh, 1972): «По существу, нет методов изучения кровотока [в желу¬дочно-кишечном тракте] у интактного человека».

Тем не менее был проведен ряд исследований желудочно-кишечного тракта. Даже эти примитивные работы еще раз продемонстрировали и сложность реакций организма, и то, что физиологические процессы у человека никак не укладываются в наши упрощенные схемы. Например, представление Кэннона (Cannon, 1927) о взаимоисключающих влияниях симпатиче¬ской и парасимпатической систем оказываются неверными даже в самом простом случае тошноты. Это неприятное ощущение возникает при снижении двигательной активности желудка и секреции желудочного сока (симпатикоподобная реакция, обусловленная торможением импульсации блуждающего нерва) с одновременным усилением слюноотделения (парасимпати¬ческая реакция). Таким образом, конечный эффект опреде¬ляется совместной активностью обоих отделов вегетативной нервной системы.

Пищеварительную систему (рис. 6.3) обычно подразделяют на две части. Одна из них — это цепь полых органов, через которые от начала до конца проходит пища. По мере этого продвижения пища постепенно расщепляется на питательные вещества, которые могут всасываться в кровь, и неперевари-мые остатки, которые выводятся из организма. Другая часть системы включает органы, вырабатывающие пищеварительные соки.

В пищеварительном тракте мы различаем два типа физио¬логических изменений, доступных для регистрации: химические и двигательные (т. е. мышечные). Основные данные о тех и других изменениях были впервые получены при исследовании больных с желудочной фистулой — искусственным отверстием, ведущим из желудка прямо на поверхность тела. Их создают иногда хирургическим путем (например, при непроходимости пищевода), а иногда они образуются в результате ранений. Однажды — 6 июня 1822 года — канадский охотник Алексис Сен-Мартен стоял слишком близко к своему приятелю, стре¬лявшему из дробовика. Полученная рана зажила так, что в области пупка осталось отверстие, ведущее в желудок. Лечив-

 

100

 

Глава 6

 

Дыхательная и пищеварительная системы

 Продолжение »

Создать бесплатный сайт с uCoz